定义及性质
AVL树:AVL树是一颗自平衡的二叉搜索树.
AVL树具有以下性质:
根的左右子树的高度只差的绝对值不能超过1
根的左右子树都是 平衡二叉树(AVL树)
百度百科:
平衡二叉搜索树(Self-balancing binary search tree)又被称为AVL树(有别于AVL算法)
且具有以下性质:它是一 棵空树或它的左右两个子树的高度差的绝对值不超过1,并且左右两个子树都是一棵平衡二叉树。
平衡二叉树的常用实现方法有、、、、等。
最小二叉平衡树的节点总数的公式如下 F(n)=F(n-1)+F(n-2)+1 这个类似于一个递归的,
可以参考Fibonacci(斐波那契)数列,1是根节点,F(n-1)是左子树的节点数量,F(n-2)是右子树的节点数量。
AVL树--插入操作
AVL插入--旋转
代码实现
from bst import BST, BiTreeNodeclass AVLNode(BiTreeNode): def __init__(self, data): BiTreeNode.__init__(self, data) self.bf = 0class AVLTree(BST): def __init__(self, li=None): BST.__init__(self, li) def rotate_left(self, p, c): s2 = c.lchild p.rchild = s2 if s2: s2.parent = p c.lchild = p p.parent = c # 更新bf if c.bf == 0: p.bf = 1 c.bf = -1 else: p.bf = 0 c.bf = 0 return c def rotate_right(self, p, c): s2 = c.rchild p.lchild = s2 if s2: s2.parent = p c.rchild = p p.parent = c # update bf if c.bf == 0: p.bf = -1 c.bf = 1 else: p.bf = 0 c.bf = 0 return c def rotate_right_left(self, p, c): g = c.lchild s3 = g.rchild c.lchild = s3 if s3: s3.parent = c g.rchild = c c.parent = g s2 = g.lchild p.rchild = s2 if s2: s2.parent = p g.lchild = p p.parent = g # 更新 bf if g.bf > 0: # g.bf == 1 p.bf = -1 c.bf = 0 elif g.bf == 0: p.bf = 0 c.bf = 0 else: # g.bf == -1 p.bf = 0 c.bf = 1 g.bf = 0 return g def rotate_left_right(self, p, c): g = c.rchild s3 = g.lchild c.rchild = s3 if s3: s3.parent = c g.lchild = c c.parent = g s2 = g.rchild p.lchild = s2 if s2: s2.parent = p g.rchild = p p.parent = g # 更新 bf if g.bf < 0: # g.bf == 1 p.bf = 1 c.bf = 0 elif g.bf == 0: p.bf = 0 c.bf = 0 else: # g.bf == -1 p.bf = 0 c.bf = -1 g.bf = 0 return g def insert_no_rec(self, val): p = self.root if not p: self.root = AVLNode(val) return while True: if val < p.data: if p.lchild: p = p.lchild else: p.lchild = AVLNode(val) p.lchild.parent = p node = p.lchild break elif val > p.data: if p.rchild: p = p.rchild else: p.rchild = AVLNode(val) p.rchild.parent = p node = p.rchild break else: return # 更新bf while node.parent: if node.parent.lchild == node: # 左孩子 if node.parent.bf < 0: # node.parent.bf=-2 左边深 g = node.parent.parent if node.bf > 0: n = self.rotate_left_right(node.parent, node) else: n = self.rotate_right(node.parent, node) elif node.parent.bf > 0: node.parent.bf = 0 break else: node.parent.bf = -1 node = node.parent continue else: # 右孩子 if node.parent.bf > 0: # node.parent.bf=2 右边深 g = node.parent.parent if node.bf < 0: n = self.rotate_right_left(node.parent, node) else: n = self.rotate_left(node.parent, node) elif node.parent.bf < 0: node.parent.bf = 0 break else: node.parent.bf = 1 node = node.parent continue # 旋转结束后 # 连接旋转后的子树的根和原来的树 n.parent = g if g: if node.parent == g.lchild: g.lchild = n else: g.rchild = n break else: self.root = n breaktree = AVLTree([7,3,5,4,2,8,6,9,1])tree.pre_order(tree.root)print("")tree.in_order(tree.root)